LifeBrush: Painting interactive agent-based simulations

Timothy Davison*, Faramarz Samavati’ and Christian Jacob?
Department of Computer Science
University of Calgary
Calgary, Canada
Email: *tbdaviso@ucalgary.ca, Tsamavati@ucalgary.ca, icjacob@ucatlgary.ca

Abstract—Building and interacting with 3D agent-based sim-
ulations that contain a large number of agents is a significant
challenge. What if we want to create an intricate new arrange-
ment of agents, or reconfigure a large number of agents? We
present LifeBrush, a cyberworld for interactively painting large
and elaborate multi-agent simulations with commodity virtual
reality systems that we can then simulate and explore. Our
main methodology uses sketch-based discrete element texture
synthesis to paint agent arrangments. We define a map to
convert agents to elements in this framework when we paint
and back to agents when we simulate. Like creating new colors
on a paint palette, we create example agent arrangements and
configurations in an example palette. We paint new agents into
a scene with sketch-based generative brushes. We also use those
brushes to reconfigure agents to match examples created in the
palette. Then we simulate, pause the simulation and modify
the agents with our sketch-based tools. This iteration loop
enables new levels of interactivity for the design, simulation,
and exploration of agent-based simulations.

1. MOTIVATION

Agent-based simulations have been used to model bio-
logical systems such as swarming insects and birds [1].
Biomolecular processes within cells [2] are another example
where agent-based models help to capture complex interac-
tions among many entities. Imagine the intricate arrange-
ment of proteins and their relationships that occur within a
small compartment of a biological cell [3]. It is challenging
though, to build such simulations. First one has to configure
the initial state of the model. Then one has to define the
properties and state of the various types of agent interactions
that constitute the model dynamics.

Consider zooming inside a biological cell, and navigating
to one of its organelles (Figure 1). Let’s pick a mitochon-
drion, the powerhouse of the cell. Here ATP is assembled, a
molecule which is used to provide energy to the rest of the
cell (for details on mitochondrion function see Section V).
Contrary to textbook illustrations, mitochondria are densely
packed and highly organized [4].

One method to configure such a molecular simulation
is through parameterization [5]. Yuen et al. [6] configured
mitochondria in their simulation through a combination of
manual and randomized placement of agents. But, would it
be possible to create a cyberworld to more intuitively create,
bring to life, and interactively control such a simulation?

Mitochondrion

Eukaryotic Cell

@ on
ATP Synthase s / Proton pumps

© Proton agent
© ADP

© ATP

Figure 1. We painted this interactive 3D agent-based mitochondrion
simulation with our system. The mitochondrion is an organelle inside of
Eukaryotic biological cells. When we press play, the simulation comes to
life: spinning ATP synthase converts ADP to ATP, while proton pumps
move protons across the inner membrane. We painted this simulation with
20,000 agents in about 5 minutes.

Imagine we “paint” a virtual mitochondrion, then “walk
into” its 3D space and “press play” (i.e., bring it to life).
Being immersed, we navigate through the simulation, ex-
plore and observe. Then, we pause the simulation, adding

painting agents in
the example palette

new agent
arrangement

L e

selection

(@ (b)
Figure 2.

painting a 3D
agent-based simulation

immersive and interactive
agent-based simulation

spinning
behaviour

pumping
behaviour

(©)

(a) Painting a new arrangement of agents (white outline) into the example palette using another arrangement of agents (orange outline). (b)

Painting the red agents from (a) into an agent-based simulation. (c) Stepping into an immersive simulation we can the painted agents come to life. In
the close-ups, molecules in the mitochondrion spin and pump red agents along the orange arrow.

new agents. We resume, pause again, and reconfigure the
membrane proteins. How can we do this interactively and
within a 3D immersive environment (Figure 2 and 3)?

We introduce a novel sketch-based synthesis system to
interactively generate, configure and guide the agents in a
live 3D simulation. We developed a virtual reality (VR)
cyberworld—using commodity VR hardware—where a user
can virtually step into an agent-based simulation, such as
the mitochondrion. Our sketch-based generative brushes are
used to “paint” proteins along a brush-path, in space, or onto
3D surfaces (Section 1V).

We use example-based synthesis to create agents arranged
and configured based on an example palette. The attributes
and spatial arrangement of synthesized agents are deter-
mined by the texture synthesis algorithm to match the exam-
ples found in the example palette through a combination of
generation and optimization steps. Just like an artist would
mix colors on a palette and apply them to a canvas, we
create example agent palettes from which we paint agent
arrangements into the scene (Figure 2a). We support a
variety of stochastic and structured distributions. To initially
define agents in the palette, we manually place them in
the desired arrangement and configure their behaviors and
properties. Our generative tools can also be used to sketch
new example arrangements derived from previous examples.
Our generative framework can both synthesize new agents
or reconfigure agents in a simulation to match examples in
the palette (Section III).

We base our sketch-based generative tools on example-
based discrete element texture synthesis (Section III). In this
framework, we represent agents with elements. Elements
have a position and attribute vector that compactly and
efficiently capture the behavior and properties that define
an agent (Section 5). When we paint, we convert the agent

example palette and the agent-based simulation to elements,
and when we simulate, we convert the elements back into
agents. Therefore, our system defines a mapping to convert
agents to elements and vice versa. The duality between
elements and agents allows us to leverage sophisticated
techniques from discrete element texture synthesis [7, 8, 9]
to synthesize large and intricate agent-based simulations.

We use a region growing algorithm to synthesize new
elements iteratively. This method is fast and suitable for in-
teractive applications [9]. An optimization procedure relaxes
newly synthesized elements relative to the example palette.
Our system has been carefully designed to be performant
for interactive VR applications.

We will also describe how to run these agent simulations
in real-time, and interactively pause, sketch and reconfigure
agents (Section V). Thus, our system, LifeBrush, provides
an interactive design and exploration path for complex agent-
based simulations.

II. RELATED WORK

Here we will use the molecular machinery of life as
examples to illustrate our LifeBrush system. Yet, it should
be noted that our system can be used for any 3D agent-based
simulation.

Molecular Dynamics Construction and Visualization

Harvard BioVisions released a series of carefully animated
videos illustrating various molecular processes inside bio-
logical cells [10]. UnityMol [11] is a tool for visualizing
molecules, and Molecular Rift is VR molecular viewer
[12], both of which were designed for visualizing single
molecules.

David Goodsell [3] has created highly detailed yet static
2D illustrations of the molecular machinery inside cells.

Many different techniques have been developed for pro-
ducing 3D visualizations of structures inside of biological
cells [13]. With Packmol [14] and CellPack [15] one can
randomly pack proteins and molecules onto surfaces and
regions inside of a virtual cell according to recipe files.
Klein et al. [5] have used GPUs to accelerate the packing
process based on parameterized recipes. These methods do
not simulate the resulting scenes, though. Our system uses
sketch-based synthesis to paint agents into a simulation
which can be played interactively. We also present the
simulation in VR for increased immersion.

Agent-based modeling

Agent-based approaches have been used to model bio-
logical systems like swarming insects and birds [1], with-
out relying on purely mathematical models [16]. Agent-
based systems have also been used to model the Lactose
operon inside E. coli bacteria [17], for gene regulation
[18] and immune system models [19]. Along the lines of
mathematical whole-cell models [20], agent-based models
have been applied to both prokaryotic [2] and eukaryotic
cells [6]. Meanwhile, multi-scale agent-based models can
simultaneously capture cells and groups of cells at different
scales [21, 22]. Automatic abstraction has been used to
reduce the computational complexity of such models [23].

Sketch-based synthesis and procedural modeling

Sketch-based interfaces apply the familiarity of real-world
tools like pencil and paper to interactive design problems,
such as 3D modeling [24]. Ecological simulation has been
used to synthesize and render large plant ecosystems [25].
Procedural modeling can generate 3D structures, such as
buildings [26]. Meanwhile, statistical sketch-based synthe-
sis has been used to create terrains covered in trees and
vegetation [27, 28]. Interactive 3D content modeling has
been applied to the digital earth [29, 30]. Example-based
discrete element texture synthesis uses a small example
of discrete elements (like rocks in a cobblestone road) to
synthesize large non-repeating arrangements of elements [7].
Sketch-based synthesis enables interactive sketching with
discrete element textures [9]. Repetitive structures can also
be synthesized with example-based methods [31]. Sketch-
based interfaces have also been used to design and guide
dynamic fluid simulations [32] and for sketching crowds of
agents [33]. Finally, sketch-based interaction has been used
in VR to paint in virtual space [34]. We build on discrete
element synthesis and sketch-based interaction for creating
and configuring agents in a 3D VR simulation.

III. SKETCH-BASED SYNTHESIS OF AGENTS

In this section, we describe our method for generating
agents through sketch-based synthesis. As shown in Figure
2, we use sketch based synthesis to interactively design,
configure and guide the agents in a live simulation. Our

objective is to make simulations interactive experiences.
With our approach, a user can rapidly try out new ideas and
experiment with agents; we keep the human in the loop.

Sketch-based synthesis generates agents along the brush
path relative to examples created in an example palette. The
spatial arrangement, behaviors and other properties of the
agents are chosen from the example to minimize differences.
A relaxation procedure further improves the synthesized
agents to match the example closely. It is important to
point out that the arrangements we synthesize are not just
stochastic, they can be highly organized, such as the lipids
in our mitochondrion (Figure 1).

We use VR to put the user inside of the simulation.
VR gives the user depth perception and the ability to walk
around and interact with a live agent-based simulation. These
factors increase immersion. We leverage VR input devices
as a natural and intuitive way to paint agents directly in 3D.

Sketch-based synthesis

paint agents

paint agents in
space and on
surfaces from the
example palette

Arepeat
simulate paint agents
R - .

£ 8%,
BN

w @,
g r e

'~ play @ o

Figure 3. Our system enables iterative design and simulation. We paint
a simulation, press play and simulate. Then we pause, paint new agents and
repeat. The example palette enables us to create new agent arrangements
and configurations to paint into our simulations.

A generative brush creates agents along the brush path as
we move it through space or along a surface (Figure 2b).
We use an example-based discrete element texture synthesis
algorithm [9] that builds on work by Ma et al. [7] and Ijiri
et al. [8]. With example-based synthesis, we give an algo-
rithm a small example arrangement of agents. An algorithm
then synthesizes new agents along the brush path so that

the synthesized agents have a similar, but not repeating,
arrangement and assignment of agent properties relative to
the example. This is a ‘what you see is what you get’ method
for defining agent configurations and arrangements.

Revisiting our mitochondrion example, various regions
and surfaces can be filled and covered with different types
and arrangements of agents (Figure 2). The example palette
is a space where the user designs arrangements of agents and
configures their behavior and other properties (Figure 2a).
To sketch agents into the simulation, we select agents from
the palette, and an example-based synthesis algorithm uses
the example to create agents along the brush path (Figure
2). See [9] for a more detailed description of this algorithm.

We can design the palette manually, but we can also use
our generative tools to rapidly sketch new agent arrange-
ments, apply agent behaviors and properties from another
example, and manually tweak the parameters of some of the
agents. Examples in the palette can be stochastic (Figure 8b)
or structured (Figure 8a). To specify a spatial relationship the
user only has to place agents near each other. The synthesis
algorithm will use the spatial arrangement as an example of
what to synthesize.

Discrete element synthesis

A discrete element is a particle with a position, radius
and attributes vector [7, 8]. For example, an attribute vector
might contain the shape and color of an element.

The goal of discrete element texture synthesis is to create
large-scale textures that are not repetitive, such as the mem-
brane proteins in our mitochondrion (Figure 1). A discrete
element texture has the property that the arrangement of
elements is locally similar in a small window to other
regions of the texture [35]. In our discrete element texture
synthesis algorithm, a neighborhood cost function (based on
[7]) determines the degree of similarity between windows
in an example and output discrete element texture. The goal
of discrete element texture synthesis is to minimize the
local neighborhood cost everywhere in the output relative
to matching neighborhoods in the example.

In our system, we measure the similarity of two neigh-
borhoods of elements by aligning them with each other
and finding pairs of elements (Figure 4). The differences
between elements in a pair are summed with the other
pairs of elements to give the similarity between the two
neighborhoods.

Let a be an element, it has a position p,, radius r,
and attributes a,. A neighbourhood of radius r, around
a is given by n(a). An element in the neighbourhood of
a is given by @’ € n(a). We use Ma et al.’s definition
of neighbourhood distance [7]. The neighbourhood distance

X m % &

]
|
@
R R
| ® align \®
]
isan e’ € n(e) @is an o € n(o)
Figure 4. To compare two neighborhoods of agents n(e) and n(o), we

align the two neighborhoods and compare pairs of elements. The difference
in position and attributes between elements in a pair determine the similarity
of the two neighborhoods.

between a and another element b is:

(@) —n®)| = > [(par—pa)— (0o — 1) +w(car, o).

a’en(a)
(D

where o’ is an element in the neighbourhood n(a) and
the matching pair for that element in n(b) is denoted with
b’. Pairs are found by aligning the two neighbourhoods
and greedily assigning elements from n(a) to n(b) that are
nearby (see Davison et al. [9] for details). w(a,b) € R is a
customizable function that compares the attribute vectors of
two elements. For example, in our mitochondrion simulation,
we simply use the dot product, e.g., w(a, ap) = Qg -
. We will discuss the attribute vector and how we use it to
represent the properties and behaviors of an agent in the next
section.

Agent synthesis

A general definition of an agent is as a set of situations
that the agents can be in, its actions, its internal data and
a decision function that determines what actions to take,
given internal data and the current situation [36]. From our
perspective, an agent is a software object with a set of
properties and behaviors that determine the set of situations
it can be in, its actions, internal data and decision function.

Our element-synthesis framework is modular and separate
from the implementation of the agent simulation. Internally,
we synthesize discrete elements. Then, just before we sim-
ulate, we take the synthesized elements and convert them
into agents. When we pause and start painting again, we
convert the simulation agents back into elements. The user
creates and defines agents in the example palette, and then
we convert them into elements for use by our element-
synthesis framework.

Elements are representations of agents in our framework.
Our idea is to map the properties and behaviors of agents
into the component vectors of elements (Figure 5), where
they can be compared with a neighborhood similarity func-
tion (Equation 1). Anything that we can’t put into the

element attribute vector, we attach to an additional data
property on the element.

painting : simulation

(7 : (; N
elements 7 p e N agents
ﬁ Element map | Agent !
position I position '
2 |
attribute | properties
vector :
|
|
, : behaviours
additional | | ‘
k data !
map
elements \ W N agents
\ | ——

Figure 5. Our generative tools synthesize elements, when we simulate,
we map elements onto agents and vice versa. When we paint, we take the
simulation agents and map them onto elements. Elements and agents share
positions. The properties and behaviors of agents are mapped onto element
attribute vectors. Those things that can’t be mapped into the attribute vector
go into the additional data component of an element, where they have no
impact on the element cost function.

Hence, we maintain two domains: the agent domain
agents and the element domain elements. We use our
sketch-based tools on elements, and run our simulations
on agents. The simulation designer defines a map M
agents <— elements that is used to convert the agent
domain to an element domain, and vice vera. As an example,
let us have a look at how we map an ATP synthase agent
to an element (Figure 6). The ATP synthase behavior class
is part of the attribute vector, along with the attributes
that determine the rate at which adenosine diphosphate is
converted to adenosine triphosphate, the color and shape of
the agent, and the rate at which it spins. The remaining
internal data is added to the additional data property.

(ATP Synthase Agent\ (Element h
position position
properties: attribute vector:
shape shape
color color

behaviours:

spin state — ATP synthesis class-type
. >/ +— proton interaction class-type

ATP synthesis >< additional date:
proton interaction —spin state
< & ~
Figure 6. Here we give an example of mapping an ATP Synthase agent

to an element. We copy the position directly between the two. The shape
and color are added to the attribute vector. The ATP synthesis and proton
interaction behaviors are mapped as class-types in the attribute vector. We
don’t map the spin state of the agent onto the attribute vector, so we attach
it to the element’s additional data area.

We make a distinction between agents and elements for

two reasons: (1) For interactive sketch-based synthesis, effi-
ciency is critical. Therefore, elements are essentially a vector
that can be efficiently copied and stored, whereas data struc-
tures for an agent can be significantly more complicated. Our
element framework has internal data structures to accelerate
queries based on the element vector representation. (2) By
converting an agent to an element, the simulation designer
controls what agent attributes our system can create and
modify.

IV. SKETCH-BASED SYNTHESIS AND SIMULATION IN
VIRTUAL REALITY

Sketch-based interaction is inspired by physical paint-
and-canvas interactions and has been extensively explored
for 3D modeling [24]. These tools can be used to design
the environment of an agent-based simulation, such as the
geometry of the mitochondrial membranes (Figure 1). Our
contribution focuses on the agents in a simulation and a new
set of sketch-based tools to synthesize and configure agents
in VR.

Virtual reality

We use VR controllers as a painting tool in a 3D sim-
ulation. Using Unreal Engine 4 [37], we implemented VR
based generative brushes that paint elements along the 3D
path of positionally-tracked VR controllers. The user holds
two controllers (Figure 7). Attached to the left controller is
a user interface. The right controller is used to interact with
the interface and for sketch-based interaction.

vi generation brush
@) radius
\

Example Palette

N} top click
&7/} bottom click

(b)

Figure 7. (a) The generation user interface on the left and right controller.
The user can select controls on the left hand with the right hand to show
the example palette and play the simulation. Clicking the top of the touch-
pad with the thumb toggles surface and volume painting, while clicking
the bottom toggles adding or erasing elements. The current brush radius is
indicated by a sphere and controlled by the trigger button. (b) The example
palette selection interface has a selection sphere and a touch-pad toggle
for adding or removing elements from the selection.

We support room-scale VR navigation (Figure 2) and in-
teractive navigation gestures. Teleportation involves point-
ing at a location and pressing a button to teleport there. Like
an astronaut pulling his/her way through a space station, the
grab gesture can be used to pull oneself through the world.

We embed the agent-based simulation inside a box and the
stretch gesture uses two hands to resize and rotate that box.

Sketch-based synthesis: VR interfaces and tools

The generative-brush (Figure 8a) synthesizes new ele-
ments in a small region along the 3D brush path using
interactive discrete element synthesis [9]. The path B is
composed of a set of brush-spheres which have a position
and a radius (bp;, br;). We set the radius of the brush sphere
with the VR controller trigger button.

The generative-brush synthesizes new elements, but when
it passes over previously synthesized elements, the position
of those elements and the attribute vector are updated to
reflect the example palette selection. Elements outside of the
brush path are not affected. There are useful applications for
this, for example, we use the generative brush to add ATP
synthase behavior to agents in a scene that did not have this
behavior before (Figure 11).

With the filler tool, (Figure 8b) the user identifies a fill
point where there are no elements, then synthesized elements
are added until there is no more room to do so. The eraser
(Figure 8c) removes elements within a certain distance along
a brush path. The selection brush selects agents in a radius
around the brush.

Example palette construction

The user builds the example palette with three different
methods: (1) manual placement and configuration of agents,
(2) copy-paste operations, and (3) use of the generative
brush. Our implementation is based on the Unreal Engine
4 Editor ([37]). Therefore we leverage the Unreal’s user
interface for manually placing agents in 3D space and
configuration through Unreal’s property editor windows. The
generative brush can be used directly inside of our VR
environment to paint new examples. For the copy-paste
operation, the user selects agents with the selection brush
from the palette or the simulation, and then the user specifies
a target location in the example palette to copy the agents
too.

V. AN EXAMPLE LIFEBRUSH SIMULATION

To illustrate our iterative sketch-based synthesis and our
agent-based system we go back to our mitochondrion ex-
ample (Figure 1). We describe an example interaction with
our sketch-based tools in Figures 9, 10, 11 and 12 (see
https://youtu.be/HYLvN2qijeA for a video of this interac-
tion).

The mitochondrion is an organelle in Eukaryotic cells
(cells with a nucleus) that generates most of the cell’s adeno-
sine triphosphate (ATP), a source of chemical energy. ATP-
synthase molecules in the inner mitochondrial membrane
between the cristae and matrix space (Figure 1), combine
phosphate and adenosine diphosphate (ADP). The activity
of ATP-synthase is driven by a proton gradient between the

_-- brush-stroke - (bpi, br;)

4 ’

(a) Generative-Brush A randomly selected patch from the example palette
selection is copied to the output at the first brush point to seed region-
growing along the rest of the brush points in B.

(b) Filler Tool The empty region is filled with elements starting at the
fill-point.

(c) Eraser Removing elements along the brush stroke (orange dashed-line).

Figure 8. Our sketch-based tools applied to a planar surface.

cristae and matrix space when a gradient is present, protons
flow through ATP-synthase, causing it to mechanically spin
and change its shape in such a way that bound ADP and
phosphate molecules are combined to form ATP. The proton
gradient is maintained by another set of chemical reactions
that drive protons through pumps from matrix space into the
cristae.

Implementation details and performance

Our framework for sketch-based synthesis and agent-
based simulation has two main components: (1) the sketch-
based element synthesis framework and (2) an agent-based
software interface to define the mapping function for con-
verting between agents and elements.

Our framework is implemented in the Unreal Engine 4
game engine [37]. Therefore, the simulation designer can use
any of the tools provided by this engine to define their agent-
based simulations and Unreal’s property editor windows to

https://youtu.be/HYLvN2qijeA

simulate

sketch

2oy,
> $E4
‘:’2”;” i

exampe palette

random-walks

Figure 9. Sketching the initial state of a mitochondrion simulation. We
painted the agents in this simulation from the example palette. At this point
the agents only have a random-walk behavior and the simulation models
an inactive mitochondrion.

sketch simulate

add ATP synthase
. o
behavior

add ADP agents

exampe palette

no ATP synthésis

Figure 10. ATP synthase combines phosphate with adenosine diphosphate
(ADP) to create adenosine triphosphate (ATP). In the Unreal Engine
interface, we add this behavior to the ATP synthase agents in the example
palette. Then we paint the behavior onto the ATP synthase agents in our
simulation and add ADP to the simulation. When we simulate, ADP binds
to ATP synthase. However, we need a proton gradient to get ATP synthase
spinning and produce ATP.

configure their agents in the example palette.

We developed a simulation environment suitable for
simulating large numbers of agents in virtual re-
ality. Agents are efficiently rendered using Unreal’s
UInstancedStaticMeshComponent class. We use
Flex, a GPU based particle-physics engine to handle the rigid
body collisions and forces between our agents [38, 39].

We ran the simulation on an Intel 5960x processor with
eight cores (3.0 GHz), 16 GB of RAM and a Nvidia GTX
1080 GPU. Our simulation runs at 90 frames-per-second
with about 10,000 agents.

VI. DISCUSSION AND FUTURE WORK

We used an example palette of agent arrangments to paint
a mitochondrion simulation with our VR sketch-based tools.

sketch simulate

ATP. synthesis

Figure 11. Here we add proton agents (that represent a large number
of protons) to the example palette and paint a proton gradient into the
mitochondrion’s cristae (central region in this figure). When we simulate,
the proton gradient drives protons through ATP synthase, causing it to spin
and produce ATP.

simulate

sketch

add proton
pump behavior

Re I'a

proton pumping

ATP synthesis .

Figure 12. Eventually the proton gradient equalizes, and ATP synthase
stops producing ATP. In this step, we add a proton pump behavior to some
of the agents in the example palette and paint that new behavior onto
the proton pumps in our simulation. We simulate, and a proton gradient
is restored. Eventually, ATP synthase starts spinning again and producing
ATP.

We showed how our tools could be used to experiment
and interact with this simulation. We also demonstrated
interactive simulation in virtual reality. Our simulation is
a simple illustration of what is possible with sketch-based
synthesis and agent-based simulation. In future work, we
will look at creating and evaluating more complicated and
detailed simulations. We imagine applications of our method
for interactive illustration and teaching.

We implemented a region-growing algorithm for discrete
element texture synthesis. However, there are other tech-
niques for statistical synthesis that we would like to apply
to agent-synthesis, such as [31, 40].

VR has raised some interesting interaction and visual-
ization challenges with densely populated scenes that need
to be explored. Our approach is limited by the number of
agents that can be simulated and rendered in real-time within
VR. Future research could address these limitations on
different fronts, for example by using automatic abstraction
to reduce complexity (similar to Shirazi et al. [23]), multi-
scale modeling and simulation, and levels-of-detail rendering
techniques.

[1]

[2]

[3]
[4]

[5]

[6]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in ACM SIGGRAPH computer graphics, vol. 21, no. 4.
ACM, 1987, pp. 25-34.

A. Esmaeili, T. Davison, A. Wu, J. Alcantara, and C. Jacob,
“Prokaryo: an illustrative and interactive computational model of the
lactose operon in the bacterium escherichia coli,” BMC bioinformat-
ics, vol. 16, no. 1, p. 311, 2015.

D. S. Goodsell, The machinery of life.
Media, 2009.

M. Zick, R. Rabl, and A. S. Reichert, “Cristae formationlinking ul-
trastructure and function of mitochondria,” Biochimica et Biophysica
Acta (BBA)-Molecular Cell Research, vol. 1793, no. 1, pp. 5-19,
2009.

T. Klein, L. Autin, B. Kozlikovd, D. S. Goodsell, A. Olson, M. E.
Groller, and I. Viola, “Instant construction and visualization of
crowded biological environments,” IEEE transactions on visualization
and computer graphics, vol. 24, no. 1, pp. 862-872, 2018.

D. Yuen and C. Jacob, “Eukaryo: An agent-based, interactive simu-
lation of a eukaryotic cell,” in Artificial Life Conference 2016, 2016,
p. 562.

C. Ma, L.-Y. Wei, and X. Tong, “Discrete element textures,” in ACM
Transactions on Graphics (TOG), vol. 30, no. 4. ACM, 2011, p. 62.
T. Ijiri, R. Mech, T. Igarashi, and G. Miller, “An example-based
procedural system for element arrangement,” in Computer Graphics
Forum, vol. 27, no. 2. Wiley Online Library, 2008, pp. 429-436.
T. Davison, F. Samavati, and C. Jacob, “Interactive example-palettes
for discrete element texture synthesis,” University of Calgary, Depart-
ment of Computer Science, Canada, Tech. Rep., 04 2018.

Harvard BioVisions, “The inner life of the cell (video),” 2007.

Z. Lv, A. Tek, F. Da Silva, C. Empereur-Mot, M. Chavent, and
M. Baaden, “Game on, science-how video game technology may help
biologists tackle visualization challenges,” PloS one, vol. 8, no. 3, p.
€57990, 2013.

M. Norrby, C. Grebner, J. Eriksson, and J. Bostrom, “Molecular rift:
virtual reality for drug designers,” Journal of chemical information
and modeling, vol. 55, no. 11, pp. 2475-2484, 2015.

B. Kozlikova, M. Krone, N. Lindow, M. Falk, M. Baaden, D. Baum,
1. Viola, J. Parulek, H.-C. Hege et al., “Visualization of biomolecular
structures: state of the art,” in Eurographics Conference on Visual-
ization (EuroVis)-STARs. The Eurographics Association, 2015, pp.
061-081.

L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez, ‘“Packmol:
a package for building initial configurations for molecular dynamics
simulations,” Journal of computational chemistry, vol. 30, no. 13, pp.
2157-2164, 2009.

G. T. Johnson, L. Autin, M. Al-Alusi, D. S. Goodsell, M. F. Sanner,
and A. J. Olson, “cellpack: a virtual mesoscope to model and visualize
structural systems biology,” Nature methods, vol. 12, no. 1, p. 85,
2015.

J. W. Haefner, Modeling biological systems: principles and applica-
tions. Springer Science & Business Media, 2012.

I. Burleigh et al., “Biomolecular swarms—an agent-based model of
the lactose operon,” Natural Computing, vol. 3, no. 4, pp. 361-376,
2004.

C. Jacob, A. Barbasiewicz, and G. Tsui, “Swarms and genes: Ex-
ploring A-switch gene regulation through swarm intelligence,” in
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on.
IEEE, 2006, pp. 2535-2542.

Springer Science & Business

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]
[39]

[40]

V. Sarpe and C. Jacob, “Simulating the decentralized processes of
the human immune system in a virtual anatomy model,” in BMC
bioinformatics, vol. 14, no. 6. BioMed Central, 2013, p. S2.

J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M.
Jacobs, B. Bolival Jr, N. Assad-Garcia, J. 1. Glass, and M. W.
Covert, “A whole-cell computational model predicts phenotype from
genotype,” Cell, vol. 150, no. 2, pp. 389401, 2012.

C. Jacob, S. von Mammen, T. Davison, A. Sarraf-Shirazi, V. Sarpe,
A. Esmaeili, D. Phillips, I. Yazdanbod, S. Novakowski, S. Steil et al.,
“Lindsay virtual human: Multi-scale, agent-based, and interactive,” in
Advances in Intelligent Modelling and Simulation. ~Springer, 2012,
pp. 327-349.

A. Wu, T. Davison, and C. Jacob, “A 3d multiscale model of
chemotaxis in bacteria,” in Artificial Life Conference 2016, 2016, p.
546.

A. S. Shirazi, T. Davison, S. von Mammen, J. Denzinger, and
C. Jacob, “Adaptive agent abstractions to speed up spatial agent-based
simulations,” Simulation Modelling Practice and Theory, vol. 40, pp.
144-160, 2014.

L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-
based modeling: A survey,” Computers & Graphics, vol. 33, no. 1,
pp- 85-103, 2009.

O. Deussen, P. Hanrahan, B. Lintermann, R. Méch, M. Pharr, and
P. Prusinkiewicz, “Realistic modeling and rendering of plant ecosys-
tems,” in Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM, 1998, pp. 275-286.

P. Merrell and D. Manocha, “Model synthesis: a general procedural
modeling algorithm,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, no. 6, pp. 715-728, 2011.

A. Emilien, U. Vimont, M.-P. Cani, P. Poulin, and B. Benes,
“Worldbrush: Interactive example-based synthesis of procedural vir-
tual worlds,” ACM Trans. Graph., vol. 34, no. 4, pp. 106:1-106:11,
Jul. 2015.

J. Gain, H. Long, G. Cordonnier, and M.-P. Cani, “Ecobrush: In-
teractive control of visually consistent large-scale ecosystems,” in
Computer Graphics Forum, vol. 36, no. 2. Wiley Online Library,
2017, pp. 63-73.

K. Ketabchi, A. Runions, and F. F. Samavati, “3d maquetter: Sketch-
based 3d content modeling for digital earth,” in 2015 International
Conference on Cyberworlds (CW), Oct 2015, pp. 98-106.

F. Samavati and A. Runions, “Interactive 3d content modeling for
digital earth,” The Visual Computer, vol. 32, no. 10, pp. 1293-1309,
2016.

R. Roveri, A. C. Oztireli, S. Martin, B. Solenthaler, and M. Gross,
“Example based repetitive structure synthesis,” in Computer Graphics
Forum, vol. 34, no. 5. Wiley Online Library, 2015, pp. 39-52.

B. Zhu, M. Iwata, R. Haraguchi, T. Ashihara, N. Umetani, T. Igarashi,
and K. Nakazawa, “Sketch-based dynamic illustration of fluid sys-
tems,” in ACM Transactions on Graphics (TOG), vol. 30, no. 6.
ACM, 2011, p. 134.

Q. Gu and Z. Deng, “Formation sketching: an approach to stylize
groups in crowd simulation,” in Proceedings of Graphics Interface
2011. Canadian Human-Computer Communications Society, 2011,
pp. 1-8.

Google LLC, “Tilt brush software,” 2016.

L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in
example-based texture synthesis,” in Eurographics 2009, State of the
Art Report, EG-STAR. Eurographics Association, 2009, pp. 93-117.
M. Afsharchi, B. H. Far, and J. Denzinger, “Ontology-guided learning
to improve communication between groups of agents,” in Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems. ACM, 2006, pp. 923-930.

Epic Games, Inc., “Unreal engine 4 game engine,” 2018.

Nvidia Corporation, “Flex particle physics library,” 2018.

M. Macklin, M. Miiller, N. Chentanez, and T.-Y. Kim, “Unified
particle physics for real-time applications,” ACM Transactions on
Graphics (TOG), vol. 33, no. 4, p. 104, 2014.

R. Roveri, A. C. Oztireli, and M. Gross, “General point sampling
with adaptive density and correlations,” in Computer Graphics Forum,
vol. 36, no. 2. Wiley Online Library, 2017, pp. 107-117.

	Motivation
	Related work
	Molecular Dynamics Construction and Visualization
	Agent-based modeling
	Sketch-based synthesis and procedural modeling

	Sketch-based synthesis of Agents
	Sketch-based synthesis
	Discrete element synthesis
	Agent synthesis

	Sketch-based synthesis and simulation in virtual reality
	Virtual reality
	Sketch-based synthesis: VR interfaces and tools
	Example palette construction

	An example LifeBrush simulation
	Implementation details and performance

	Discussion and future work

