
Interactive example-palettes for discrete element texture synthesis

Timothy Davison, Faramarz Samavati, Christian Jacob
{davison,samavati,jacob}@ucalgary.ca

Preprint submitted for review/Computers & Graphics (2018)

Abstract

Textures composed of individual discrete elements are found
in everything from human-made glass-tilings to forests and
tropical coral. We propose an interactive sketch-based system
for synthesizing scenes consisting of many discrete element
textures. We have implemented an example-palette, a design
window where a user can use our sketch-based tools to create
discrete element textures and then paint those textures into a
scene or back into the example-palette to create new textures.
Our interactive sketch-based tools use a new and fast region-
growing algorithm that iteratively synthesizes new elements
around previously synthesized elements. To support discrete
element textures with different scales in the same output, we
parameterize our region-growing algorithm on a per-element
basis. Our method is capable of synthesizing structured and
stochastic example discrete element textures. We explore ap-
plications of our system for building virtual worlds (such as
for video games) and for sketch-based modeling.

1 Introduction

The world is filled with repeating and semi-repeating arrange-
ments of discrete elements. Some are simple, like cobblestone
pathways, while others are elaborate and intricate, like glass
tilings. Synthesizing virtual worlds composed of discrete ele-
ments is an important problem and has applications for video
games and film. Our goal is to synthesize these worlds inter-
actively.

Consider the problem of building a hypothetical bunny-
planet for a children’s fantasy computer game (Figure 1). In
our system, we paint cobblestone, forests, crops, meadows,
and villages on this planet with an interactive sketch-based
system for example-based discrete element texture synthesis.
Our system supports multiple examples, at different scales, in
a palette.

One challenge for synthesizing virtual worlds is to keep the
human in the loop to guide synthesis while removing the te-
dious task of manual element placement. In example-based
discrete element texture synthesis, the user provides a small
example of how the cobblestone in a pathway is arranged.
An algorithm uses the example to synthesize locally similar
non-repeating output. Such an algorithm must be fast for
real-time interactive applications, which is one of the main
problems we set out to solve. Another challenge is how to
interactively design complex texture exemplars.

Our idea is an interactive, sketch-based discrete element
texture synthesis system for designing textures on-the-fly in

an example palette. Then, we interactively paints those tex-
tures on surfaces in a 3D virtual world (Figure 2). We have
developed a fast region-growing algorithm for discrete element
texture synthesis that powers our interactive sketch-based
generative brushes. In our bunny-planet scenario, we cre-
ate an example-palette containing different discrete textures
using our generative brushes. When one selects an example,
like the mushrooms, and sketches that discrete element tex-
ture into the scene, our region-growing algorithm synthesizes
elements along the brush path in real-time. Examples from
the palette can also be used to paint new examples into the
palette (Figure 10). With our interactive system, one can cre-
ate complicated and intricate virtual worlds and objects with
little effort.

The example-palette is a design window for arranging the
example texture elements. It would be reasonably simple to
add an example-palette, with multiple textures, to other sys-
tems for discrete element texture synthesis. However, one
challenge is how to handle discrete textures at different scales
when applying those textures to the same output. In our
solution, we parameterize our synthesis algorithm on a per-
element basis (Section 4)—in single example systems like
Roveri et al. [1] and Ma et al. [2] a global set of parameters
is used. One of the most important per-element parameters
in our system is neighborhood size. It should be large enough
to capture a repetitive pattern in the example texture (an ex-
ample of different neighborhood sizes are the cobblestone and
trees in Figure 3).

Our main contribution is a fast region-growing algo-
rithm that iteratively synthesizes new elements based on
previously synthesized elements (Section 5). We introduce a
method to limit size of the active-problem (Section 5.1). Our
fast method enables interactive applications for discrete ele-
ment texture synthesis, which we demonstrate with an inter-
active sketch-based system. Our sketch-based tools (Sec-
tion 5.4) guide our region-growing algorithm to synthesize
new elements in the example-palette or directly on 3D sur-
faces (Section 5.7) without having to worry about surface
parameterizations or texture mapping. We also demonstrate
applications for sketch-based modeling (Section 5.4). A happy
consequence of our interactivity and sketch-based tools is an
example-palette that allows on the fly design and synthesis
of complex discrete texture examples (Section 5.5). The pa-
rameters for synthesis are configured on a per-element basis
in the example-palette and copied to elements in the output
during synthesis, this helps us sketch scenes with discrete el-
ement textures that have different scales. We analyze our
method in comparison to previous methods in Section 6.

1

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

Figure 1: This hypothetical bunny-planet, that one might find in a children’s computer game was interactively synthesized
with our system. We designed the discrete element textures in the example-palette (left) and applied them to the Standford
bunny mesh using our sketch-based generative tools. This process took about 45 minutes. (top right) A whole view of the
bunny-planet. The supplementary material contains a video of the bunny-planet design (filename: bunny planet.mp4).

1. Example-palette selection
2. Sketching

3. Region growing

Example-palette

Figure 2: Interactive synthesis of a mushroom garden. 1) The
user selects a mushroom garden discrete element texture from
the example-palette. 2) The user sketches the garden onto
the surface. 3) Our fast region-growing algorithm iteratively
synthesizes new elements in the highlighed area as the user
sketches.

2 Related work

Pixel-based texture synthesis: Mosaic models (Schachter
and Ahuja [3]) and coherent noise (Perlin [4]) were two of
the early methods to randomly synthesize pixel-based tex-
tures. In example-based texture synthesis, a 2D example im-
age is used to synthesize a large scale texture (Wei et al. [5])
that is perceptually similar to the example (Tamura et al.
[6]). Pixel-based approaches commonly choose pixels to add
upon neighborhood comparisons between the previously syn-

exemplar

neighbourhood radius small mushrooms
in large trees

cobblestone among
houses

mixing vegetation
with cobblestone

Figure 3: (left) Each example in the example-palette has
different parameters for discrete element texture synthesis.
Here, the neighborhood radius parameter illustrates the fea-
ture size that will be synthesized. (right) Per-element param-
eters enable us to synthesize scenes at multiple scales. Notice
the scale of the discrete mushroom texture compared to the
scale of the discrete tree texture.

thesized pixels and example pixels (Efros and Leung [7] and
Wei and Levoy [8]). Wei and Levoy [9] synthesize textures
over arbitrary manifold surfaces. Later works reduced the
number of neighborhood comparisons making synthesis much
faster (Ashikhmin [10] and Tong et al. [11]). Dischler et al.
[12] decompose an input texture into some representative tex-
ture particles that are duplicated and recombined to create
larger textures. Kwatra et al. [13] reframe the problem of
texture synthesis as one of energy minimization, while Han

2

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

et al. [14] build on this with a fast and discrete solver. Cohen
et al. [15] use Wang tiles as a fast way to synthesize large
non-repeating textures composed of related tiles. Recently Li
and Wand [16] achieve real-time texture synthesis with gen-
erative neural networks. Texture synthesis has been applied
for multi-scale synthesis (Han et al. [17] and Vanhoey et al.
[18]).

Discrete element texture synthesis, the area to which
our work belongs, is similar to pixel-based texture synthe-
sis but instead of directly manipulating pixels, the texture is
represented with individual discrete elements. Some meth-
ods use discrete elements to synthesize raster textures. For
example, texture bombing splatters small texture elements
into a larger texture (Glanville [19]) and more recently this
has been optimized for on-the-fly generation on GPUs (Wang
et al. [20]). Texture sprites can be efficiently applied to sur-
faces directly on the GPU (Lefebvre et al. [21]). Other meth-
ods directly synthesize arrangements of individual elements
(such as an arrangement of multiple 3D flower models), using
the elements directly and without rasterizing them to a pixel
buffer. Ijiri et al. [22] synthesize 2D arrangements of elements
by incrementally copying elements from an example to grow
a network of interconnected elements and it is closely related
to Barla et al.’s [23] method for synthesizing stroke patterns.
Ma et al. [24] extend Kwatra et al.’s [13] expectation maxi-
mization framework to discrete element textures. Ma et al. [2]
synthesize dynamic discrete element textures, such as swim-
ming schools of fish. Xing et al. [25] apply discrete element
texture synthesis for drawing autocompletion. Roveri et al.
[1] reframe discrete element texture synthesis as a continuous
problem and explore the use of gradient descent optimization
on an example and output signal for specialized repetitive
3D structure synthesis. Finally, while not example-based, Loi
et al. [26] propose a scripting language for technical artists to
design a wide variety of element textures.

A major limitation of Roveri et al.’s [1] repetitive structure
synthesis is that it requires a repetitive enough example tex-
ture (according to their article in Section 7.4, Paragraph 4 [1]).
Roveri et al.’s [1] algorithm gets stuck in local optima when
synthesizing textures without the necessary repetition. We
do not have this limitation (see Section 6.3). In general, we
achieve superior run-time performance in our test. However,
on textures with enough repetitive structure present, Roveri
et al. [1] achieve superior results (see Section 6.3). Concerning
interactivity, we also support generative brushes (two other
notable systems with generative brushes are Ijiri et al. [22]
and Emilien et al. [27]). Our system is designed to build
virtual worlds composed of multiple discrete textures, in con-
trast, Roveri et al.’s system is designed for synthesizing a 3D
object from a single example texture.

Our region-growing algorithm is related to the fast and in-
teractive region-growing algorithm in Ijiri et al.’s [22] work.
However, the graph topology and heuristics of Ijiri et al. re-
quire 1-ring neighborhood comparisons, in contrast, we build
on Ma et al.’s [24] point-based representation and neighbor-
hood matching to support larger neighborhoods and thus
more complicated texture examples (such as the coral in
Figure 9 or the glass tilings in Figure 14). Ma et al.’s
[24] method is primarily an offline texture synthesis process,
in contrast, we support multiple example textures and per-

element texture-synthesis parameters, an interactive sketch-
based interface, and a significant increase in the rate of syn-
thesis with our new fast region-growing algorithm. We also
demonstrate that region-growing can synthesize textures that
are difficult to achieve with Ma et al.’s initialization (Section
6.4).

Many works in discrete element texture synthesis demon-
strate results on a single example (Ijiri et al. [22], Ma et al.
[24] and Roveri et al. [1]) and it might be simple to extend
them to more than one example. However, creating a power-
ful, flexible and interactive system with support for multiple
examples is not so straightforward. Our example-palette is
an interactive and persistent space where new textures can
be designed. Furthermore, to support examples at different
scales, we introduce per-element parameters to control the
texture synthesis process (Section 4). Particularly in the case
of Roveri et al. [1], it might be difficult to modify their sys-
tem to support multiple textures with per-element parame-
ters, due to more complicated derivations of their gradient
functions used for gradient descent based optimization.

We chose Ma et al.’s [24] point-based representation and op-
timization framework over other recent works, such as Roveri
et al.’s [1], for the variety of textures that this framework
can support. In Section 6.3, we demonstrate the limitations
of repetitive structure synthesis on some examples. In our
experiments, our region growing algorithm achieves superior
run-time performance to both Ma et al. [24] and Roveri et al.
[1].

Statistics-based discrete element texture synthe-
sis also generate elements based on examples, but in this
case, the elements are synthesized by a statistical model de-
rived from an example. Hurtut et al. [28] consider the bound-
ing boxes of elements during synthesis, while Landes et al.
[29] improve on this with a shape-aware model. Roveri et al.
[30] synthesize point distributions with adaptive density and
correlations. Recently, Emilien et al. [27] and Gain et al. [31]
use sketch-based tools for synthesizing element distributions
for building virtual worlds.

Emilien et al.’s [27] palette stores statistical models learned
from examples specified in the scene. In contrast, our
example-palette is an environment where the user can design
and experiment with example arrangements and then apply
those textures to the scene. A limitation of Emilien et al.’s
method is synthesizing densely packed and structured tex-
tures like the glass tilings in Figure 14.

Geometry synthesis, model synthesis and procedu-
ral modeling Bhat et al. [32] introduce the idea of example-
based synthesis for geometric textures on 3D surfaces (using
a voxelized output domain), with user-designed orientation
fields guiding synthesis, we use a similar idea for discrete el-
ement textures. Zhou et al. [33] took Bhat et al.’s [32] idea
a step further and generated quilted surface geometries. The
idea was refined by Yuksel et al.’s [34] multi-stage pipeline
based on stitch meshes. In contrast to these techniques, we
do not require or rely on the topological relationship between
the elements (vertices).

3D procedural models have been synthesized based on ex-
ample models (Merrell and Manocha [35] and Peytavie et al.
[36]). Bokeloh et al. [37] build a shape grammar by analyz-
ing an input model for symmetric regions. The shape gram-

3

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

mar is used to semi-manually or automatically generate 3D
models. Synthesizing structured patterns with space coloniza-
tion algorithms have been used for modeling trees (Runions
et al. [38]). Palubicki et al. [39] use sketch-based interfaces to
generate trees. Li et al. [40] guide the growth of grammars
across a surface with a user defined-tensor field. In contrast
to procedural and grammar based methods, discrete element
texture synthesis algorithms (like our method) generate semi-
repetitive arrangements of elements that have locally similar
features across the output. Grammar-based systems are ca-
pable of producing branching structures that our method is
not.

An example-based system for sketching structured decora-
tive patterns was developed by Lu et al. [41]. Guerrero et al.
[42] synthesize patterns with a tool that explores pattern vari-
ations. Tangles are a recursive and repetitive pen-and-ink 2D
art style, Santoni and Pellacini [43] define a grammar for pro-
cedurally generating them within arbitrary polygons. These
specialized algorithms have heuristics designed around stroke
and curve synthesis. In contrast, our algorithm’s heuristics
are based on reproducing the repeating or semi-repeating el-
ement arrangements within an example discrete element tex-
ture.

3 Overview of our approach

In this section, we provide an overview of our approach and its
major components: the example-palette, region-growing and
optimization, surface mapping and sketch-based interaction.

A user of our system paints with discrete element textures
into a scene or onto an object. In our system, a user creates
discrete element textures in the example-palette. Those tex-
tures can be selected and then applied to virtual worlds and
objects with a generative sketch-based brush—we also sup-
port other tools, such as erasers and filler tools. Furthermore,
the generative brush can be used to create new textures in the
example-palette derived from discrete element textures in the
example-palette. We base our generative tools on a new fast
region-growing algorithm for discrete element texture synthe-
sis. An interleaved optimization (based on the optimization
from Ma et al. [24]) step further improves previously synthe-
sized element arrangements.

3.1 Discrete element texture synthesis

Our texture synthesis method has two interleaved steps. A
generation step uses a region-growing algorithm to iter-
atively synthesize new elements (Section 5). The region-
growing algorithm synthesizes elements based on an example
discrete element texture selected from the example-palette.
An optimization step relaxes the arrangement of newly syn-
thesized elements relative to the example-palette selection
(Section 5.2).

We track where new elements can be synthesized with so-
called free-space points (Section 5.1). We derive free-space
points from an analysis step performed on the example-
palette. We use free-space points as an efficient method to
keep the active problem small, achieving high rates of synthe-
sis as a result.

Region-growing is well suited for sketch-based tools. New
elements are synthesized in a region-growing front at each
iteration of the algorithm. To synthesize elements along a
path, we seed region-growing at the start with a small ex-
ample copied from the example-palette. Region-growing then
iteratively adds new elements—so long as they are within a
certain distance of the path—until it reaches the end of the
path.

It is possible to use region-growing alone to synthesize ele-
ments. However, the local and greedy way that we synthesize
new elements can lead to artifacts, such as gaps in the output.
To solve this, we interleave an optimization step (Kwatra et al.
[13] and Ma et al. [24]) to reduce these artifacts. We compare
region-growing alone to region-growing with optimization, in
our results and analysis (Section 6.4).

We adapt our generation and optimization steps to 3D sur-
faces through the use of a mapping function (Section 5.7). We
compose a local mapping function wherever we want to gen-
erate new elements; the function maps from a Cartesian grid
to an orientation field over the surface. The user designs the
orientation field by placing singularities (Crane et al. [44]).

4 Discrete element texture neigh-
bourhood similarity

The goal of image texture synthesis is to generate image tex-
tures which are maximally similar around every pixel in the
output to pixels in the example (Efros and Leung [7]). With
discrete element textures, the goal is the same, except we are
comparing element positions and attributes in a neighborhood
(Ma et al. [24]).

In our system, the user makes a selection from the example-
palette, and our goal is to generate element arrangements that
are similar to the selected texture. We iteratively copy ele-
ments from the example next to previously synthesized ele-
ments in such a way that they are perceptually-close with the
example texture. We use a neighborhood distance measure to
determine which elements to copy, based on the surrounding
elements. The neighborhood distance measures the differ-
ence in the relative position and attributes of elements in two
neighborhoods.

Let e ∈ E be an element in the example-palette and let
o ∈ O be an element in the output domain. The output
domain is the region, typically a surface, where elements from
the example-palette will be synthesized. Every element has a
position pe ∈ R3, various attributes captured in an attribute
vector ae (such as shape, color or type) and a bounding radius
re ∈ R. The position and radius define a bounding sphere that
can be used to check for element overlaps.

In texture synthesis applications, the similarity between an
exemplar and synthesized elements is commonly based on a
neighborhood distance function. The goal of this function is
to determine how perceptually distant two different neighbor-
hoods are. This function has a low value when two neighbor-
hoods are similar.

We require our function to have two properties: 1) measur-
ing differences between output and exemplar neighborhoods
and 2) identifying exemplar elements to copy to the output
domain during the region-growing step.

4

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

align

Figure 4: The similarity between two neighborhoods is found
by first aligning those neighborhoods at their centroids pe
and po. Then, we sum the distance between pairs of elements
and the attributes of those elements compared (in this case
shape-type, as given by stars, circles, and squares).

Figure 5: The neigbhorhood n(e)
(green circle) around pe is deter-
mined by the neigbhorhood radius
r̄e. The bounding sphere (orange
circle) around pe with radius re is
used to check for overlaps with other
elements—whose bounding spheres
are shown in light orange.

To measure two element neighborhoods are we use Ma
et al.’s [24] point-based neighborhood similarity measure.
This measure aligns the centroids of two neighborhoods and
compares the distance between pairs of points as illustrated
in Figure 4. Let n(e) (where n(e) ⊂ E and e′ ∈ n(e) is an
element in the neighborhood of e) be the geometric neighbor-
hood of e, it includes all elements within radius r̄e of position
pe. r̄e is the neighborhood radius of e (Figure 5), it is dif-
ferent than the bounding radius re, which is used to check
to check for collisions or overlaps between elements. The dis-
tance between an output neighborhood n(o) and an example
neighborhood n(e) is given by:

|n(o)−n(e)| =
∑

o′∈n(o)

|(po′ −po)− (pe′ −pe)|2 +ω(o′, e′). (1)

ω is a function that compares the attributes of two ele-
ments. o′ is an element in the neighborhood n(o), the pair for
that element in n(e) is denoted with e′.

Our generation and optimization steps rely on the notion
of full and partial assignment of pairs of points between two
neighborhoods n(e) and n(o) (Figure 6). A partial assignment
occurs when we cannot form pairs between all of the elements
in n(e) and n(o). There are two sets of partial pairings, the
left-partial pairings pairsl(n(o), n(e)) with the form {(o′,0)})
and the right-partial pairings pairsr(n(o), n(e)) of the form
{(0, e′)}). The set of full pairings is pairsf .

Unlike Ma et al. [24] we use a greedy pair assignment al-
gorithm instead of a Hungarian pair assignment (Kuhn [45]).
First, we align the input and output neighborhood. For each
element in the output neighborhood, we find the nearest in-
put element that has the same attributes. We do not pair
elements that are too far apart. Our motivation for a greedy
algorithm that excludes points is because example elements

alignment pair assignment

Figure 6: In finding the pairings between two neighborhoods
n(o) and n(e) we align the two neighborhoods at their cen-
troids. Next, we find the full pairings between elements that
are close enough pairsf (n(o), n(e)) and the leftover partial
pairings pairsl(n(o), n(e)), pairsr(n(o), n(e)).

that do not have an output pairing are excellent candidates
to copy to the output.

In detail, for two neighborhoods n(o) and n(e) aligned at
po and pe, we sort elements in the output neighborhood by
distance from po. Then, for each sorted element o′ ∈ n(o) in
the neighborhood of the output element, we find the closest
element e′ ∈ n(e). If this element is within a certain threshold
distance do′ , where |(po′−po)−(pe′−pe)|2 ≤ do′ , then we form
the full-pair (o′, e′) and remove e′ from further consideration.
Otherwise, we form the left-partial pair (o′,0). The remaining
elements in the exemplar neighborhood e′ ∈ n(e) form the
right-partial pairs {(0, e′)}. Typically, the threshold distance
de of an element e is twice the bounding radius, de = 2re.

In our implementation, we construct a k-d tree (Bentley
[46]) for the output O and input E domains. During pair
assignment the cost to find the nearest element e′ ∈ n(e)
to an output element o′ ∈ n(o) is an O(log n) operation in
the size of E . The cost of our pair assignment algorithm is
O(m log n), where m is the largest neighborhood size in O or
E .

4.1 Per-element parametrs for discrete tex-
ture synthesis

Each element has parameters—the bounding radius re and
neighborhood radius r̄e for an e ∈ E—used by our element
synthesis algorithm to synthesize examples at different scales
and with different properties. For example, the neighborhood
size of cobblestone in Figure 3 is different than the neighbor-
hood size of a house. Likewise, the bounding radius of cob-
blestone is much smaller than the bounding radius of a tree.
When we synthesize a new element, we copy these parame-
ters to the output. Therefore, every element in the output
receives different parameters affecting texture synthesis, this
allows us to synthesize many different textures in the same
scene and allows those textures to interact with each other—
for example, the grass between the cobblestone in Figure 3.

5

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

5 Region-growing and optimization
for discrete element texture syn-
thesis

The selection S is a subset of the example-palette, S ⊂ E . We
synthesize new elements using the selection as input to our
region growing algorithm. Our goal is to synthesize elements
that minimize the energy (Kwatra et al. [13] and Ma et al.
[24]) of neighborhoods in the output, O, relative to the most
similar neighborhoods in the example-palette selection S:

E(O,S) =
∑
o∈O
|n(o)− n(e)|, e ∈ S. (2)

We approach this problem by greedily generating new ele-
ments that minimize Equation 2. Next, we relax elements in
the horizon through re-assignment of positions and attributes.
Our region-growing algorithm (Algorithm 1) consists of three
main steps: 1) seed selection and generation, 2) optimization,
and 3) free space updating.

For interactive applications, fast texture synthesis is criti-
cal. Therefore, we consider a small active subset of the output
domain, the horizon H ⊂ O. The horizon is a region contain-
ing recently synthesized elements.

We generate new elements around seed elements (Figure
7a). Seed elements are a small subset of previously synthe-
sized elements in the horizon H that can generate new ele-
ments. We can quickly determine if a seed can generate new
elements by checking if it has nearby free-space points.

During generation (Figure 7b), we visit each seed in the
horizon and search the example-palette selection for a neigh-
borhood that is maximally similar to the seed’s neighborhood.
If any of the elements in the exemplar neighborhood overlap
with a free-space point, we copy the elements to the output.

During optimization (Figure 7c), we visit each element
in the horizon and find the most similar neighborhood in the
example-palette selection. The example neighborhoods are
aligned with the output neighborhoods and the elements be-
tween them paired. The difference in positions and attributes
between element pairs are used by the optimization step to
adjust the output to look more like the example-palette selec-
tion.

Finally, we update the free-space points (Figure 7d).
We add new free-space points, derived from an analysis pre-
processing step on the exemplar, to the output around the
newly synthesized elements. Then, we remove the free-space
points that now overlap with the newly synthesized elements.
Output elements that are not nearby a free-space point are
discarded from the horizon. The next iteration of our algo-
rithm starts back at the seed-selection step.

5.1 Generation and free-space

In the generation step, we find a set of seed elements Seeds ⊂
H that will generate new elements overlapping with nearby
free-space points. Seeds, for example s, are selected so that
some fraction of their neighborhood, with radius 0.75 r̄s, does
not overlap with other seeds.

We track where to generate new elements with a set of
free-space points F . A free space point v ∈ F has a bounding

output element horizon element
free-space point

exemplar element
seed point prediction vector

exemplar output

(a) Seed Selection A set of seed elements are selected from the horizon
(in this example there is only one) such that the seeds also have free-
space points nearby.

exemplar output

(b) Generation For each seed element, the most similar neighborhood
in the example-palette selection is found whose elements overlap with the
free-space points. Those overlapping elements are copied into the output
domain and added to the horizon. The free-space points are removed.

exemplar output

(c) Optimization For each element in the horizon, the most similar
neighborhood in the example-palette selection is found and aligned with
the horizon (here only one aligned neighborhood is shown). After pairing
the elements in the horizon, the direction vectors between pairs (arrows)
are used by the optimization to adjust the positions of the horizon ele-
ments.

exemplar output

(d) Free-Space Updating The output domain after generation and
optimization. Elements are pruned from the horizon and new free-space
points are found.

Figure 7: An example of one round of element generation
and subsequent optimization. The objective is to expand the
elements to the right, past the light-gray dotted line. A legend
appears at the top.

6

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

Algorithm 1 O ← RegionGrowing(E)

.
H ← copy central patch of the selection S
O ← H
while target region is not filled do

// Generation
select seeds from H
for s ∈ seeds do

candidates← {c ∈ co(s)|pc intersects a free-space
point v ∈ F}

e← min
e
|n(s)− n(e)|, e ∈ candidates

G ← copy elements in pairsr(s, e) not intersecting
O

H ← H ∪ G
// Expand free-space
F ← F ∪ {free(g)|g ∈ G}

end for

// Optimize the horizon
O ← O ∪H
minimize E(H,S)

// Update free-space and prune the horizon
remove freespace points in F intersecting O
remove all h ∈ H where ph is too far from all pv, v ∈ F

end while

radius rv and a position pv.
For each seed s ∈ Seeds, we find the most similar example

element se such that n(se) contains elements overlapping with
a free-space point, that is ∃e′ ∈ n(se) that overlaps with a free
space point v ∈ F . Next, we copy each of those overlapping el-
ements to the horizon as oe′ and remove v from F . Intuitively,
the new position of oe′ is found by transforming the neighbor-
hood of se to align with s and assigning oe′ that transformed
position. The new position of oe′ is ps′e = mps

(pse −pe′) +ps.
Here, mps is a mapping at ps that can be used to map example
space onto a 3D surface at that point.

Sometimes, the most similar neighborhood that can gener-
ate elements is not the best one to pick—we need to ignore
bad suggestions. Let e0 be the most similar neighborhood to
a seed s and ei is another similar element neighborhood. If
e0 cannot generate elements, then we consider ei. However,
we need to ignore bad suggestions, so we compare the two
neigborhoods e0 and ei. If |n(o) − n(e0)|/|n(o) − n(ei)| > c
for all ei and for some ratio constant c, we abandon the seed
element without adding the found elements.

To keep the size of the optimization and generation prob-
lems small, we prune elements that cannot predict new ele-
ments from the horizon, at the start of the generation step.
We prune an element in the horizon, h ∈ H, when there are
no free-space points in F that overlap with a bounding sphere
around ph of radius rh.

Rather than a brute-force search of E to find the most simi-
lar example element to an output element, we take advantage
of the properties of Markov Random Field textures, namely
coherence and locality (Efros and Leung [7]). Locality states
that the position and attributes of an element relative to other
elements depend only on nearby elements. Stationarity states

that locality is independent of element position. The locality
property implies that elements that are close together in the
exemplar will also tend to be close together in the output
domain, which is coherence (Ashikhmin [10] and Tong et al.
[11]). As in Ma et al. [24], we use the idea of k-coherence
search to reduce the size of the search space to a user-defined
k.

For each example element e ∈ E , k-coherence search caches
the k most similar examples to e as co(e). The example ele-
ment that was used to generate a particular output element o
is oe. During synthesis, instead of a brute-force search of E for
the most similar example element to o we can search through
co(oe). The idea is to exploit the coherence of elements in
the output domain. A major benefit of k-coherence search is
that increasing the number of elements in an example does
not decrease the rate of synthesis. A typical value of k in our
system is between 3 and 5, recall that every element in the
output has its own set of k-coherent neighbors in the example,
so this provides a lot of variation in the search space.

Before deciding what element to copy to the output, we
must determine if and where an element might be placed. We
accelerate this decision with free-space points. The idea is
to reduce the number of example-palette neighborhoods that
generation has to search through. In a pre-processing step,
we perform clustering on the neighborhoods in co(e) for each
example-palette element e to reduce the set to a single set
of free-space points. This set of free-space points describes
where elements might be synthesized in the output for output
elements derived from that element. We use free-space points
to search for where elements can be generated, but also to
efficiently prune elements from the horizon.

Free-space points are generated by a pre-processing step on
the example-palette that exploits the concept of coherence.
We consider each example element e in turn, then for each
c ∈ co(e) we take all of the positions of the elements in the
neighborhoods of each n(c) to get the set of vectors free(e) =
{pc′ − pc|c′ ∈ n(c) and c ∈ co(e)}. To reduce the number of
vectors in free(e) we use density based clustering (Ester et al.
[47]), replacing the points with the centroids of each resulting
cluster.

After the optimization step, we update the free-space points
relative to the output elements. We derive the free-space
points from the relative offset of the free-space vectors from
their respective elements. We rebuild the set of all free space
positions F in the output domain by offsetting all of the free
space vectors for all elements by the position of those ele-
ments:

F = {mpo(v) + po|v ∈ free(oe) and o ∈ O}. (3)

If a free-space point v ∈ F overlaps with an element at pv
we remove v from F . As an implementation detail, we keep
track of free space positions in a k-d tree to enable efficient
queries (Bentley [46]).

5.2 Optimization

The optimization step reduces the energy of recently synthe-
sized elements in the horizon relative to the example-palette
selection. The optimization problem consists of elements in
the horizon and nearby elements within a small distance of

7

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

the horizon (by default, this distance is the size of the largest
neighborhood radius in the example-palette). Expanding the
horizon improves coherence between horizon elements and
frozen elements in the output domain. We call this expanded
horizon H̄, and naturally H ⊂ H̄.

We minimize the energy function E(H̄,S) by arranging the
elements in the expanded horizon so that the neighborhood
of each element aligns as closely as possible with the similar
example-palette selection neighborhoods. Each of these cor-
responding exemplar neighborhoods provides predicted posi-
tions for the elements in the output domain. Each element in
the horizon will have multiple predictions. We use Ma et al.’s
[24] least-squared optimization method to find new positions
for these elements from their predictions.

For each h ∈ H̄ we find the nearest example-palette selec-
tion element e = nearest(h,S). The full pair assignments
pairsf (h, e) = {(h′, e′)} provide us with a prediction vector
p̂(h, h′) = pe′−pe for each h′ ∈ n(h). The new predicted posi-
tion of each neighboring horizon element is p′h′ = ph′+p̂(h, h′).
We end up with many such new predicted positions for each
element. We solve this overdetermined optimization problem
using Ma et al.’s [24] least squares optimization method cou-
pled with the Sparse Cholesky Decomposition module imple-
mented in the Eigen matrix library (Guennebaud et al. [48]).
In the next section we will look at the weights that are applied
to each prediction vector to improve the output results.

5.3 Prediction vectors

A tug-of-war occurs when two neighborhoods provide two dif-
ferent prediction vectors for the position of an element, the
result is an averaging of the two predictions. Ma et al. [24]
solve this problem by weighting prediction vectors by their
length, but this means that if a very good prediction vector
has a long length, it will receive a low weight in the opti-
mization. In contrast, we solve this problem by considering
the distribution of prediction vectors in the neighborhood of
h ∈ H̄ (Figure 8). Principal component analysis of the pre-
diction vectors in a neighborhood gives us three orthogonal
vectors that along with the center of the distribution, we can
use to weight the prediction vectors. Specifically, we use a
multivariate Gaussian function to weight the prediction vec-
tors in a neighborhood. If X̄ is the mean of the prediction
vectors p̂(h, h′) for h and C = X̄T × X̄ ∗ 1/m, the weight αi

that we give to one of the prediction vectors p̂i for h is

αi = exp

(
p̄i

T × C−1 × p̄i
−2

)
. (4)

To maintain coherence with output elements not in the hori-
zon, we give low weight to predicted positions for elements not
in the horizon while also giving their previous positions a high
weight. This weighting allows old elements to move but oth-
erwise constrains the prediction vectors to work on horizon
elements.

5.4 Sketch-based interaction

We support various sketch-based tools for synthesizing dis-
crete element textures in our system. The generative-brush

predicted positions
original element

multivariate Gaussian

principal component
vectors of predicted
positions

Figure 8: Prediction vectors for an element are weighted by a
multivariate Gaussian distribution (the gray function in the
background) for the set of predictions. The basis for this
Gaussian function is found through principal component anal-
ysis on the set of prediction vectors.

(Figures 9a and 9b) synthesizes new elements in a small re-
gion along the brush path. We can also apply the generative-
brush to previously synthesized results, in which case it will
optimize their appearance relative to a texture selected from
the example-palette. For example, one can use this method
to repair undesired arrangements on a cobblestone road or
even to transform a cobblestone road into a mushroom gar-
den. With the filler tool (Figure 9c) the user sets a fill point
where there are no elements, and then we synthesize new el-
ements until there is no more room to do so (or the user tells
us to stop). Finally, the eraser (Figure 9d) removes elements
within a certain distance from a brush path. These tools
work on the scene (for example, the bunny-planet) and the
example-palette.

The example-palette can be built through manual element
placement and attribute assignment. Copy-paste operations
may also be applied. However, a more exciting possibility en-
abled by our system is to design the example-palette textures
using our sketch-based tools and textures selected from else-
where in the example-palette (see Figures 10a-e for one such
example).

We represent generative brush-strokes across a 3D surface
in our system as a series of brush-points B composed of a posi-
tion and radius (bpi, bri). The user controls the brush radius
with a slider. We use ray-casting to map the brush-points
from screen-space onto the surface. The set of brush-points
B constrains the generation step to nearby brush-points (Fig-
ure 9a). If there are no elements near the first brush-point, a
random patch from the example-palette selection is copied to
the output domain to seed synthesis. We remove brush points
from B when there are no free-space points that overlap with
it. The eraser tool removes overlapping brush-points from B
and any nearby overlapping elements (Figure 9d).

In Figure 10, we demonstrate a sketch-based 3D model-
ing and texture synthesis application of our system with a
stretch-tool. The stretch tool deforms the underlying geom-
etry and removes any affected elements. Next, we synthesize
new elements to fill the affected region.

5.5 Example-palette

The user can manually design element arrangements in the
example-palette or use our interactive tools to synthesize el-

8

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

brush-stroke

(a) Generative-Brush A randomly selected patch from the example-
palette selection is copied to the output at the first brush point to seed
region-growing along the rest of the brush points in B.

(b) The output domain after synthesizing elements along the brush-
stroke in Figure 9a.

fill-point

(c) Filler Tool The empty region is filled with elements starting at the
fill-point.

brush-stroke

(d) Eraser Removing elements along the brush stroke (orange dashed-
line).

Figure 9: Our sketch-based tools.

ements back into the example-palette. When designing an
example arrangement, the user can assign the neighborhood
radius r̄ and bounding radius r to each element (or a group
of elements) using a property editor user interface. When we
modify elements in the example-palette, we recalculate the
k-coherent neighbors for the rest of the example palette and
update the affected k-coherence caches in the output.

5.6 Filling voids in the exemplar

Our region-growing algorithm tends to fill sparse regions
greedily (Figure 11). To counter this, we let the user place
invisible elements in those regions (Figure 12). The user can
use manual placement or the generative-brush with a source
texture of invisible elements. During this process, we toggle
invisible elements to a visible state.

5.7 Surface synthesis

With surface synthesis, prediction vectors tell us in which
direction to ‘walk’ across the mesh. We use Crane et al. [44] to
find an orientation for the output domain mesh. Crane et al.’s
method is closely related to Ray et al.’s [49]. The orientation
field can be automatically computed (it takes less than one
second), or the user can design it by placing singularity points
on the mesh as described by Crane et al. [44].

For an element h ∈ H̄ and a prediction vector p̄ in its
neighborhood, ph is already on the surface of the mesh. We
look up the orientation at that point o(ph) and walk along the
integral curve on the surface passing through ph and in the
world direction o(ph)×p̄ until we have travelled |p̄| units along
that curve. We use this integral curve walking for mapping
new elements, prediction vectors, and free-space points onto
the surface—this is a similar idea to the orientation fields
in Bhat et al. [32]. It is also similar to Wei and Levoy [9],
except we do not compute the orientation field on-the-fly as
we synthesize, it is interactively designed and precomputed.

5.8 View based synthesis

In a 3D scene, many of the components of that scene may
be occluded from view (Figure 13). Therefore, during syn-
thesis, we focus on just those regions that are visible. We
maintain two queues, one with elements visible to the camera
and another with elements occluded by geometry in the scene.
We prioritize synthesis to elements in the visible queue. In
our implementation, we make use of the GPU’s depth buffer
to test whether a free space point is occluded or not. If a
free-space point is not visible, the generation step can skip
generating a new element from that free-space point (Section
5.1). When all visible elements have been generated, we start
synthesizing elements at nearby non-visible free-space points.

6 Results and discussion

6.1 Implementation and parameters

We have open-sourced our implementation and experiments
at https://github.com/REDACTED FOR ANONYMOUS
REVIEW under a permissive MIT license. Our implemen-
tation was developed as an editor module within the Unreal
Game Engine (Epic Games, Inc. [50]). We use the Unreal
Editor property editor interface to configure element param-
eters.

The element bounding radius re defines a bounding sphere
around an element e and is used to check for overlaps with
other elements, if it is too small, it will lead to crowded out-
put. The neighborhood size of an element is controlled by r̄e,
it should be large enough to capture the patterns in the ex-
ample (Figure 3 contains some example neighborhood radii).
A too large neighborhood radius will decrease performance.
In general, we found a 3-ring or less neighborhood sufficient
for our results. A 3-ring neighborhood is one where r̄e = 3a,
where a is the average spacing between elements in an ex-
ample texture. A low value for k in k-coherence search will
improve the speed of synthesis, but it will reduce variation in
the output. We found a value of five, for k, to be sufficient

9

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

(f) coral bunny (g) geometry editing (h) regenerated elements (i) sketch-based editing(i) sketch-based editing

(a) (b) (c) (d) (e)
fill tool geometry

tool
automatic
refill

synthesis
tool

example palette design

stre
tch

Figure 10: This figure demonstrates sketch-based 3D modeling and discrete element texture synthesis. (a) Example-palette
design: a small example arrangement is created by manually placing elements. (b) The example from (a) is used to sketch a
more complicated texture. (c) A new example is created. (d) The new example is used to fill in the gaps. (f) The filler tool
is applied to the Stanford bunny whose ear is subsequently stretched (g), erasing the affected elements. (h) The elements
on the ear are regenerated. (i) We erase elements on the ear and replace them with white elements (e). The supplementary
material contains a video showing the interactive design of the bunny (filename:sketching.mp4).

(a) no voids (b) with voids (c) voids hidden

Figure 11: (a) Our region-growing algorithm greedily fills in
the space between apples in Figure 12a. (b) Using the mod-
ified apple example in Figure 12b our algorithm synthesizes
the correct arrangement, with the void elements shown here
for illustration. (c) Void elements are hidden by default.

for our results. Five may seem like a low value, but recall,
every element in the output has its own set of k-coherence
candidates in the exemplar, in practice this leads to lots of
variation. The constant c (Section 5.1) improves output qual-
ity by rejecting poor candidate neighborhoods in the genera-
tion step; it should be greater than one, the default is two (in
Figure 17 we used a value of 1.4). The value de is used during
neighborhood element pair assignment, a value twice the ele-
ment bounding radius is the default. The neighborhood size
r̄e and re are the parameters we change the most.

(a) example palette (b) modified example palette

painting voids

Figure 12: (a) A sparse arrangement of apples. One can paint
the void example arrangement into the space between the
apples to create the example in (b).

6.2 Comparisons

Previous offline processes (Ma et al. [24] and Landes et al.
[29]) can generate hundreds of elements with running times
in the minutes. Our method can generate thousands of el-
ements per second, which we demonstrate in an interactive
sketch-based system. In Section 6.4 we demonstrate the limi-
tations of patch-initialization as used by Ma et al. [24]. Landes
et al.’s [29] shape-aware synthesis engine is very expensive to
compute, and so we did not consider it as the basis for our
interactive system.

In comparison to Roveri et al.’s [1] repetitive structure syn-
thesis algorithm, our system supports a wider variety of tex-
tures that lack a repetitive enough pattern for their method.
We also achieve superior runtime performance (see Section
6.3 for a detailed comparison).

Ijiri et al. [22] employ a fast region-growing method that

10

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

Figure 13: Elements that are not occluded are generated with
priority over those that are occluded. Here one can see the
backside of the bunny in the mirror does not have many ele-
ments generated yet.

relies on regularity in the topology of a network of elements
(found through Delaunay triangulation). However, their ap-
proach is limited to textures expressible with 1-ring neighbor-
hoods. In contrast, we support larger neighborhoods, we do
not rely on regularity in the example texture nor do we try
to maintain a network topology over the generated elements.
In general, we support a wider variety of texture examples.

Emilien et al. [27] have a similar example-palette idea for
synthesizing distributions of elements on virtual-world ter-
rains. However, they apply techniques from statistical syn-
thesis rather than example-based texture synthesis. Their
system learns the spatial distribution of points with multiple
histograms of the pair-wise distance between points. These
histograms are used for Metropolis-Hastings sampling (Geyer
and Møller [51] and Hurtut et al. [28]) to synthesize new el-
ements. A limitation of this sampling approach is high point
density and synthesizing densely packed element textures.
Furthermore, the histograms can have difficulty capturing re-
lationships between more than two elements (the histograms
are pair-wise), in contrast, a neighborhood similarity mea-
sure like Ma et al.’s [24] (which we also use in Section 4) can
capture those relationships. For these two reasons, synthe-
sizing the tightly packed glass tilings in Figure 14 would be
difficult with Emilien et al.’s statistical synthesis method. A
limitation of our method in comparison to Emilien et al. is
that we cannot easily adapt the density of our synthesized
arrangements relative to terrain features.

6.3 Comparisons to repetitive structure syn-
thesis

We compare our work in detail to Roveri et al.’s [1]. While
the systems were designed for different purposes, the synthe-
sis algorithms are related. We used a single core on an Intel
5960x processor (3.0 GHz) to compare our algorithm to Roveri
et al.’s [1] implementation on the examples in Figure 15. We
stopped each algorithm once it had filled the output region
and record the results in Table 1. We gave their algorithm
additional time, up to twenty minutes, to compare their best

(a) Real-life bottle

(b) Exemplar (c) (d)

Figure 14: (a) Photograph of glass tilings on a bottle by Flickr
user Laras Anjung. (d) We reproduce the photo using our
interactive sketch-based system and the exemplar in (b). (c)
an under construction view.

result against the best result achieved by our algorithm (which
stops when it has filled the output). We found that our algo-
rithm can synthesize a wider variety of discrete textures that
do not have a repetitive enough pattern for Roveri et al.’s [1]
algorithm (Figures 15a and 15c). On a repetitive structure
textures (Figure 15b), Roveri et al. [1] achieve higher quality
results than our method. In each test, we have significantly
better runtimes than Roveri et al. [1] (Table 1).

Roveri et al. mention that their example textures require
a repetitive enough pattern to avoid bad local minima which
would distort the synthesized structures (Roveri et al. [1] Sec-
tion 7.4 paragraph 4). The texture in Figure 15a is a patho-
logical input for Roveri et al.’s [1] algorithm. There are nu-
merous local optima in which their gradient descent based
neighborhood matching step (between the example and the
output) can get stuck (the rings of the texture). We selected
a small neighborhood from the center of the output (left result
in Figure 15a) and traced the path that matching neighbor-
hoods took (Figure 16). Many of those paths travel a short
distance before getting stuck in local minima. The result is
garbled output that lacks coherence. Even on a simple ver-
tical stripe pattern (Figure 15c), there are too many local
optima (Figure 16). We even tried a very high number of ran-
dom starts for the initial positions in their gradient descent,
without any improvement in the results, but with significantly
worse runtimes. Our region-growing algorithm combined with
k-coherence search (Ashikhmin [10] and Tong et al. [11]) se-
lects output element neighborhoods that have good coherence

11

https://doi.org/10.1016/j.cag.2018.10.016
https://www.flickr.com/photos/larasanjung/3114532989/
https://www.flickr.com/photos/larasanjung/3114532989/

Preprint submitted for review/Computers & Graphics (2018)

Roveri et al. (2015)

Exemplar

Ours

9.5s1,200s50.1s
(a)

Roveri et al. (2015)

Exemplar

Ours

1,200s13.5s 0.7s
(b)

Exemplar

Roveri et al. (2015) Ours

227s 1,200s 4.2s
(c)

Roveri et al. (2015) Ours

1,200s 8.7s50.1s

Exemplar

(d)

Figure 15: A comparison of Roveri et al.’s [1] repetitive structure-synthesis algorithm to our algorithm. The timings are for
how long it took each algorithm to fill the given output region. When our algorithm has filled a region, it stops. After Roveri
et al. [1] filled the output region, we gave it up to an additional twenty minutes (middle figures) so that we could compare
their best results to ours. Our algorithm is significantly faster for each of these results.

Figure 16: A trace of Roveri et al.’s [1] matching points in
the exemplar as their gradient descent based optimization
runs. The matching points were selected from the quadra-
ture points in a small region of the output for Figures 15c
and 15a respectively (for the 1200s results). In both cases,
the matching points get stuck in local optima on either the
rings or the stripes. This leads to poor coherence in Roveri
et al.’s [1] output textures in Figures 15c and 15a.

on these examples.

Random sampling control for synthesizing new elements is
another limitation of Roveri et al.’s [1] method in comparison
to our algorithm. First, multiple false starts that result in
discarded elements reduces the speed of their method. Sec-
ond, randomly chosen positions can throw off the alignment of
subsequently synthesized elements—manifested as branching
artifacts in 15c.

Roveri et al.’s [1] method was designed for synthesizing 3D
objects composed of repetitive structures. Not surprisingly,
when we give their method a repetitive enough structure they
achieve higher quality results than our method (Figure 15b).
Their output lacks the variation of our method. However, it

achieves a more accurate distribution of element densities—
we have gap and alignment artifacts in our output. On Figure
15d, we achieve more variation, but once again, Roveri et al.
[1] achieve a better distribution of element densities. However,
on these results, we achieve significantly faster runtimes.

In general, our system is a robust and comprehensive sys-
tem for synthesizing elements on 3D surfaces. We support
multiple textures at multiple scales. Furthermore, we allow
the interactive design of new discrete texture exemplars in
an example-palette and the interactive design of our surface
orientation fields. In contrast, Roveri et al.’s [1] real-time
interactive system, is designed for synthesizing a 3D object
from a single repetitive structure texture. They support gen-
erative brushes (seen in many other works, such as Ijiri et al.
[22], Ma et al. [2], Lu et al. [41] and Emilien et al. [27]), but
lack features like an example-palette and support for textures
at different scales that are critical for building virtual worlds
like our bunny-planet. To support large orientation fields,
they either use the principal curvature direction of the under-
lying mesh (without user control) or allow the user to place
control points to define the orientation field, for a large output
this is tedious and time-consuming.

On an algorithmic level, we have demonstrated superior
performance and support for a wider variety of texture exam-
ples. While in principle, it might be possible to add multiple
texture support to Roveri et al.’s [1] method, supporting tex-
tures at different scales, with per-element parameters, is a
challenge. It is not immediately apparent how this would af-
fect the derivation of their gradient functions; it would also
have implications for the sample density of their background
grid (some adaptive technique may be required for perfor-
mance). We suspect these changes would be non-trivial and
would need further research.

12

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

Example
Time
Roveri et al.

output
Roveri et al.

Time
us

output
us

Glass tiles
Fig. 15a

50.1s 6143 9.5s 6451

Grid
Fig. 15b

13.5s 765 0.7s 789

Stripes
Fig. 15c

200.6s 6083 4.2s 6241

Apples
Fig. 15d

26.5s 1142 8.7s 1154

Table 1: The timings and number of elements to fill the output
regions in Figure 15 for Roveri et al. [1] and our algorithm.

6.4 Comparisons to global optimization and
patch initialization

In this section we explore our decision to use local horizon op-
timization and region-growing versus patch-initialization and
global optimization (Figure 17). In general, we find that
region-growing alone generates results superior to Ma et al.’s
[24] patch-initialization. When coupled with local optimiza-
tion of horizon elements or global optimization on all ele-
ments, the empirical quality of the results is further improved.

To evaluate our method against Ma et al.’s [24], we im-
plemented their patch-initialization scheme in our system.
Patch-initialization as described by Ma et al.’s [24] divides the
example-palette and output domain into a grid of fixed size
cells. Cells are selected randomly from the example-palette
and copied to empty cells in the output domain. To measure
the empirical quality of an output arrangement of elements
relative to an example-palette, we track average neighborhood
distance: ∑

o∈O |n(o)− n(e)|
|O|

. (5)

Tracking average neighborhood similarity with respect to
time, allows us to compare patch-initialization (where all el-
ements are generated beforehand) to region-growing (where
elements are generated incrementally over time). A perfect
system would see this distance remain constant, or decrease,
over time.

In our experimental setup, we compare patch-initialization,
region-growing with global optimization, region-growing with
local optimization and region-growing without any optimiza-
tion on three different exemplars. We restrict each output
domain to a fixed region. We terminate the region-growing
variants when the supplied region is filled. Patch-initialization
is given as much time to run as the longest-running region-
growing variant.

We chose the three exemplars in Figure 17 to include a com-
plex semi-repeating arrangement of elements (the glass tilings
in Figure 17a) to a more stochastic arrangement of elements
derived from an example by Ma et al. [24] (the apples in Fig-
ure 17c). Artifacts are left present in the following results for
comparison purposes—however, these can be easily corrected
using our sketch-based tools.

We found that for each exemplar, patch-initialization starts
with a high average neighborhood distance that improves and

levels off. The final average neighborhood distance is signifi-
cantly higher than the region-growing variants. We attribute
this to the way in which optimization works; it is essentially
a blending of greedy predictions that can get stuck in local
optima. Patch-initialization can make abysmal choices (ran-
dom) that are impossible for the optimization steps to cor-
rect (it gets stuck in local optima). Therefore, a good initial
configuration (as created by region-growing) is very impor-
tant. Furthermore, the regular cell shape used by patch-
initialization cannot capture the underlying patterns found
in many of our exemplars.

Meanwhile, region-growing adds new elements before each
optimization step, using greedy choices. Therefore, the start-
ing configuration for optimization is better (it is not random),
and so the local minima that optimization converges on should
also be better.

Initially, region-growing can make some perfect decisions
(so average neighborhood distance is near zero). Eventually,
we run out of perfect greedy and local choices and so the
average neighborhood distance increases. The dips in average
neighborhood distance are the result of local choices in the
region-growing step. A generation algorithm that made global
decisions (across the horizon) could avoid this problem.

In the examples that we explored, we observe that the av-
erage neighborhood distance for region-growing (without op-
timization) had not leveled off yet (the orange plots in Figure
17). Poor choices accumulate, eventually the coherence be-
tween neighboring elements becomes low, and so the choices
found by neighborhood matching become poor. For other set-
tings (with optimization) an equilibrium was eventually found
sooner, and the average neighborhood distance leveled off.

Optimization helps prevent the accumulation of poor
choices and prevents a loss in coherence between neighboring
elements. We see this in the leveling off of the local and global
optimization curves. However, as we observe in Figures 17a
and 17b, local optimization leads to higher average neighbor-
hood similarities than does global optimization. We attribute
this to ‘shearing’ artifacts between the horizon elements and
‘frozen’ elements, where predictions are only generated for the
horizon elements, and their positions as a whole are shifted
relative to the frozen elements. During optimization, we com-
bat this by expanding the horizon to include elements within
a constant distance of the horizon elements.

The last exemplar (Figure 17c) is interesting. Local opti-
mization produced the lowest final average neighborhood dis-
tance. We suspect that global optimization was overfitting to
a single region of the example-palette. Indeed, in some of our
experiments, we found that letting global optimization run for
too long can produce very long artifacts running through the
entire output domain. From the narrow and greedy view of
the optimization problem, those long straight neighborhoods
are the best fit in many situations.

Our conclusion from this analysis is that patch-
initialization can produce poor initial configurations that are
impossible for the optimization step to recover. Furthermore,
it is not possible to align patch-initialization cells to some of
our examples, such as in Figure 17. An interleaved region-
growing and optimization strategy consistently produces ar-
rangements that have good average neighborhood distance.
This analysis demonstrates a significant improvement in qual-

13

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

0

35

70

Patch initialization Region growing
no optimization

Region growing
local optimization

Region growing
global optimizationExemplar

0 20 40 60 80 100 120 140

0 0.5 1 1.5 2 2.5 3 3.5

0 2 4 6 8 10 12 14 16

time (s)
17.8s6,459 elements 6,594 elements 6,594 elements 6,681 elements

28,467 elements 27,751 elements 27,737 elements 27,655 elements

2,141 elements 1,539 elements 1,473 elements 1,776 elements

17.3s 6.6s 2.5s

128.1s 120.3s 21.6s 3.0s

Average neighbourhood
distance

time (s)

time (s)

a)

b)

c)

3.3s 3.2s 1.5s 0.1s

0

12.5

25

0

125

250

Figure 17: A comparison of Ma et al.’s [24] patch-initialization as implemented in our system versus global, local and no
optimization with region-growing. The exemplar for each row is given on the left, and a plot of the average neighborhood
similarity (Equation 6.4) for each row is given in the right column. In the bottom of each screenshot, we provide the final
number of elements generated along with how long generation took or how long the algorithm was given to run, in the case of
patch initialization. Lower values in the plot are better; lower values mean that the output is more similar to the exemplar.

ity over Ma et al. [24] with our interleaved generation and
optimization method.

6.5 Results

Our system has applications for the design of virtual worlds,
such as those used in film or video games. We have designed
a scenario with a large example-palette and a large world.
Our bunny-planet is composed of 30 element types (Figure
1). In the final scene, there are 24,063 elements, which took
45 minutes to design. Rates of synthesis vary between 2,050
elements/s (the groves of trees) to 3,200 elements/s (stone
walk-way). To accommodate differences in scale, elements in
the palette have different neighborhood radii. For example,
trees have a large neighborhood while the rocks have a small
neighborhood (see Figure 3).

We demonstrate the application of our system to 3D model-
ing with a Stanford coral-bunny example (Figure 10). When
we deform the mesh, such as by stretching the bunny ears,
we discard elements in the stretched areas and then auto-
matically fill in the region. We use 2-ring neighborhoods
and achieve about 2,100 elements/s. In this example, we

also demonstrate example-palette design using the generative
brush.

We used our system to design a virtual object inspired by a
photo of a glass-tiled bottle (Figure 14). Ma et al. [24] demon-
strated their method to change the attributes of the glass
tiling, however with evidence from Section 6.4 we suspect that
patch-initialization cannot synthesize the initial state of the
bottle. Our bottle contains 21,806 elements synthesized at an
average rate of 1,100 elements/s. It took about 30 minutes to
design. We capture the circle patterns using 3-ring neighbor-
hoods. There are 1,061 elements in the example-palette.

7 Conclusion and future work

Our example-palette enables the interactive sketch-based de-
sign and synthesis of virtual worlds composed of a variety
of element arrangements. Our fast region-growing algorithm
allows interactive rates of synthesis suitable for sketch-based
modeling. Another aspect to our interactive rates of synthe-
sis is a technique for efficient pruning of the region-growing
horizon. We demonstrate results that are an improvement

14

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

Figure 18: (inset) An exemplar containing oriented logs. The
logs are composed of multiple samples to capture their long
shape (as in Ma et al. [24]). Our region growing algorithm
greedily chooses the horizontal logs over the vertical logs.

over previous work, and our system as a whole achieves new
results that would be difficult with those methods (Ma et al.
[24] Ijiri et al. [22], and Roveri et al. [1]). While Ma et al. [24]
measure their results with hundreds of elements per minute,
we measure our results in thousands of elements per second.
These speeds for discrete element textures are comparable to
other state-of-the-art techniques for statistical synthesis (Em-
ilien et al. [27]).

We have implemented a variety of sketch-based tools, in-
cluding our generative-brush that can be used for both syn-
thesizing new elements but also for relaxing previously syn-
thesized results. However, there are many more tools that we
would like to develop, such as a context-aware eraser to easily
erase around structures in an element arrangement.

There are limitations to our system. For example, sig-
nificant differences in element size within a single exemplar
are not supported by our neighborhood matching scheme. A
multi-scale approach would be required to capture multi-scale
features in a single example discrete texture, and this is one
possible direction for future work.

Our method supports multi-sample elements, which can be
used to capture more complicated shapes (Ma et al. [24]).
However, we greedily copy all of an element’s samples at once,
leaving no room for other better choices. In Figure 18 the
vertically oriented logs dominate as they tend to get copied
first and then there is no room to copy horizontal logs. Fixing
this would require a less greedy selection process, perhaps one
with backtracking.

A limitation with neighborhood matching is complexity.
The more elements there are in a neighborhood, the more ex-
pensive the computation. We demonstrate up to 3-ring neigh-
borhoods in Figure 14, but beyond this, our system would lose
interactivity.

Our pair-wise neighborhood similarity measure does not
capture perceptual similarity intuitively. In future work, we
think there is promise in using something like Roveri et al.’s [1]
continuous function representation to compare neighborhoods
of elements.

Finally, we applied a local and greedy strategy for gener-
ating elements. A global strategy that considers the entire

horizon could avoid some of the artifacts that we observed in
our results.

References

[1] Roveri, R, Öztireli, AC, Martin, S, Solenthaler, B,
Gross, M. Example based repetitive structure synthesis.
In: Computer Graphics Forum; vol. 34. Wiley Online
Library; 2015, p. 39–52.

[2] Ma, C, Wei, LY, Lefebvre, S, Tong, X. Dynamic
element textures. ACM Transactions on Graphics (TOG)
2013;32(4):90.

[3] Schachter, B, Ahuja, N. Random pattern generation
processes. Computer Graphics and Image Processing
1979;10(2):95–114.

[4] Perlin, K. An image synthesizer. ACM Siggraph Com-
puter Graphics 1985;19(3):287–296.

[5] Wei, LY, Lefebvre, S, Kwatra, V, Turk, G. State of the
art in example-based texture synthesis. In: Eurographics
2009, State of the Art Report, EG-STAR. Eurographics
Association; 2009, p. 93–117.

[6] Tamura, H, Mori, S, Yamawaki, T. Textural features
corresponding to visual perception. IEEE Transactions
on Systems, man, and cybernetics 1978;8(6):460–473.

[7] Efros, AA, Leung, TK. Texture synthesis by non-
parametric sampling. In: Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Confer-
ence on; vol. 2. IEEE; 1999, p. 1033–1038.

[8] Wei, LY, Levoy, M. Fast texture synthesis using tree-
structured vector quantization. In: Proceedings of the
27th annual conference on Computer graphics and inter-
active techniques. ACM Press/Addison-Wesley Publish-
ing Co.; 2000, p. 479–488.

[9] Wei, LY, Levoy, M. Texture synthesis over arbitrary
manifold surfaces. In: Proceedings of the 28th annual
conference on Computer graphics and interactive tech-
niques. ACM; 2001, p. 355–360.

[10] Ashikhmin, M. Synthesizing natural textures. In: Pro-
ceedings of the 2001 symposium on Interactive 3D graph-
ics. ACM; 2001, p. 217–226.

[11] Tong, X, Zhang, J, Liu, L, Wang, X, Guo, B, Shum,
HY. Synthesis of bidirectional texture functions on ar-
bitrary surfaces. In: ACM Transactions on Graphics
(TOG); vol. 21. ACM; 2002, p. 665–672.

[12] Dischler, JM, Maritaud, K, Lévy, B, Ghazanfarpour,
D. Texture particles. In: Computer Graphics Forum;
vol. 21. Wiley Online Library; 2002, p. 401–410.

[13] Kwatra, V, Essa, I, Bobick, A, Kwatra, N. Tex-
ture optimization for example-based synthesis. In: ACM
Transactions on Graphics (TOG); vol. 24. ACM; 2005,
p. 795–802.

15

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

[14] Han, J, Zhou, K, Wei, LY, Gong, M, Bao, H, Zhang,
X, et al. Fast example-based surface texture synthesis via
discrete optimization. The Visual Computer 2006;22(9-
11):918–925.

[15] Cohen, MF, Shade, J, Hiller, S, Deussen, O. Wang
tiles for image and texture generation; vol. 22. ACM;
2003.

[16] Li, C, Wand, M. Precomputed real-time texture syn-
thesis with markovian generative adversarial networks.
In: European Conference on Computer Vision. Springer;
2016, p. 702–716.

[17] Han, C, Risser, E, Ramamoorthi, R, Grinspun, E.
Multiscale texture synthesis. In: ACM Transactions on
Graphics (TOG); vol. 27. ACM; 2008, p. 51.

[18] Vanhoey, K, Sauvage, B, Larue, F, Dischler, JM. On-
the-fly multi-scale infinite texturing from example. ACM
Transactions on Graphics (TOG) 2013;32(6):208.

[19] Glanville, S. Texture bombing. GPU Gems: Program-
ming Techniques, Tips, and Tricks for 2004;.

[20] Wang, L, Shi, Y, Chen, Y, Popescu, V. Just-in-
time texture synthesis. In: Computer Graphics Forum;
vol. 32. Wiley Online Library; 2013, p. 126–138.

[21] Lefebvre, S, Hornus, S, Neyret, F. Texture sprites:
Texture elements splatted on surfaces. In: Proceedings
of the 2005 symposium on Interactive 3D graphics and
games. ACM; 2005, p. 163–170.

[22] Ijiri, T, Mech, R, Igarashi, T, Miller, G. An example-
based procedural system for element arrangement. In:
Computer Graphics Forum; vol. 27. Wiley Online Li-
brary; 2008, p. 429–436.

[23] Barla, P, Breslav, S, Thollot, J, Sillion, F, Markosian,
L. Stroke pattern analysis and synthesis. In: Computer
Graphics Forum; vol. 25. Wiley Online Library; 2006, p.
663–671.

[24] Ma, C, Wei, LY, Tong, X. Discrete element textures. In:
ACM Transactions on Graphics (TOG); vol. 30. ACM;
2011, p. 62.

[25] Xing, J, Chen, HT, Wei, LY. Autocomplete paint-
ing repetitions. ACM Transactions on Graphics (TOG)
2014;33(6):172.

[26] Loi, H, Hurtut, T, Vergne, R, Thollot, J. Pro-
grammable 2d arrangements for element texture design.
ACM Transactions on Graphics (TOG) 2017;36(3):27.

[27] Emilien, A, Vimont, U, Cani, MP, Poulin, P,
Benes, B. Worldbrush: Interactive example-based syn-
thesis of procedural virtual worlds. ACM Trans Graph
2015;34(4):106:1–106:11.

[28] Hurtut, T, Landes, PE, Thollot, J, Gousseau, Y,
Drouillhet, R, Coeurjolly, JF. Appearance-guided syn-
thesis of element arrangements by example. In: Pro-
ceedings of the 7th International Symposium on Non-
Photorealistic Animation and Rendering. ACM; 2009, p.
51–60.

[29] Landes, PE, Galerne, B, Hurtut, T. A shape-aware
model for discrete texture synthesis. In: Computer
Graphics Forum; vol. 32. Wiley Online Library; 2013,
p. 67–76.

[30] Roveri, R, Öztireli, AC, Gross, M. General point sam-
pling with adaptive density and correlations. In: Com-
puter Graphics Forum; vol. 36. Wiley Online Library;
2017, p. 107–117.

[31] Gain, J, Long, H, Cordonnier, G, Cani, MP. Eco-
brush: Interactive control of visually consistent large-
scale ecosystems. In: Computer Graphics Forum; vol. 36.
Wiley Online Library; 2017, p. 63–73.

[32] Bhat, P, Ingram, S, Turk, G. Geometric texture synthe-
sis by example. In: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry process-
ing. ACM; 2004, p. 41–44.

[33] Zhou, K, Huang, X, Wang, X, Tong, Y, Desbrun,
M, Guo, B, et al. Mesh quilting for geometric tex-
ture synthesis. ACM Transactions on Graphics (TOG)
2006;25(3):690–697.

[34] Yuksel, C, Kaldor, JM, James, DL, Marschner, S.
Stitch meshes for modeling knitted clothing with yarn-
level detail. ACM Transactions on Graphics (TOG)
2012;31(4):37.

[35] Merrell, P, Manocha, D. Model synthesis: a general pro-
cedural modeling algorithm. Visualization and Computer
Graphics, IEEE Transactions on 2011;17(6):715–728.

[36] Peytavie, A, Galin, E, Grosjean, J, Mérillou, S. Pro-
cedural generation of rock piles using aperiodic tiling.
In: Computer Graphics Forum; vol. 28. Wiley Online
Library; 2009, p. 1801–1809.

[37] Bokeloh, M, Wand, M, Seidel, HP. A connection be-
tween partial symmetry and inverse procedural model-
ing. In: ACM Transactions on Graphics (TOG); vol. 29.
ACM; 2010, p. 104.

[38] Runions, A, Lane, B, Prusinkiewicz, P. Modeling trees
with a space colonization algorithm. NPH 2007;7:63–70.

[39] Palubicki, W, Horel, K, Longay, S, Runions, A, Lane,
B, Měch, R, et al. Self-organizing tree models for im-
age synthesis. ACM Transactions on Graphics (TOG)
2009;28(3):58.

[40] Li, Y, Bao, F, Zhang, E, Kobayashi, Y, Wonka, P.
Geometry synthesis on surfaces using field-guided shape
grammars. Visualization and Computer Graphics, IEEE
Transactions on 2011;17(2):231–243.

[41] Lu, J, Barnes, C, Wan, C, Asente, P, Mech, R,
Finkelstein, A. Decobrush: drawing structured decora-
tive patterns by example. ACM Transactions on Graph-
ics (TOG) 2014;33(4):90.

[42] Guerrero, P, Bernstein, G, Li, W, Mitra, NJ. Pa-
tex: exploring pattern variations. ACM Transactions on
Graphics (TOG) 2016;35(4):48.

16

https://doi.org/10.1016/j.cag.2018.10.016

Preprint submitted for review/Computers & Graphics (2018)

[43] Santoni, C, Pellacini, F. gtangle: a grammar for the
procedural generation of tangle patterns. ACM Transac-
tions on Graphics (TOG) 2016;35(6):182.

[44] Crane, K, Desbrun, M, Schröder, P. Trivial connec-
tions on discrete surfaces. In: Computer Graphics Fo-
rum; vol. 29. Wiley Online Library; 2010, p. 1525–1533.

[45] Kuhn, HW. The hungarian method for the assignment
problem. Naval research logistics quarterly 1955;2(1-
2):83–97.

[46] Bentley, JL. Multidimensional binary search trees used
for associative searching. Commun ACM 1975;18(9):509–
517. URL: http://doi.acm.org/10.1145/361002.

361007. doi:10.1145/361002.361007.

[47] Ester, M, Kriegel, HP, Sander, J, Xu, X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In: Kdd; vol. 96. 1996, p. 226–231.

[48] Guennebaud, G, Jacob, B, et al. Eigen v3.
http://eigen.tuxfamily.org; 2010.

[49] Ray, N, Vallet, B, Li, WC, Lévy, B. N-symmetry di-
rection field design. ACM Trans Graph 2008;27(2):10:1–
10:13.

[50] Epic Games, Inc., . Unreal engine 4 game engine. 2018.

[51] Geyer, CJ, Møller, J. Simulation procedures and likeli-
hood inference for spatial point processes. Scandinavian
Journal of Statistics 1994;:359–373.

17

https://doi.org/10.1016/j.cag.2018.10.016
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007

	Introduction
	Related work
	Overview of our approach
	Discrete element texture synthesis

	Discrete element texture neighbourhood similarity
	Per-element parametrs for discrete texture synthesis

	Region-growing and optimization for discrete element texture synthesis
	Generation and free-space
	Optimization
	Prediction vectors
	Sketch-based interaction
	Example-palette
	Filling voids in the exemplar
	Surface synthesis
	View based synthesis

	Results and discussion
	Implementation and parameters
	Comparisons
	Comparisons to repetitive structure synthesis
	Comparisons to global optimization and patch initialization
	Results

	Conclusion and future work

